"
AD-A286 096

LT

ARMY ResearcH LABORATORY

Network Distributed Global Memory
for Transparent Message Passing
on Distributed Networks

Jerry A. Clarke

prepared by

Computer Sciences Corporation D T l C _

3160 Fairview Park Dr. %% TLEOTE S
Falls Church, VA 22042 % \\0] 1 7194 : i

under contract " F’s
i

DAALO03-89-7C-0088

94-34622
TS

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION 1S UNLIMITED

94 11 v 088

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the orniginator.

Additional copies of this report may be obtained from the National Technical information
Service, U.S. Department of Commerce. 5285 Port Royal Hoad, Springtieid. VA 22161

The findings of this report are not to be construed as an official Department of the Army
position, uniess so designated by other authorized documents.

The use of trade names or manufacturers names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved

OMB No 0704-0188

2N COMDIPUNG 200 /8w @w A 1R - DIPTLION 2° AT MBNION Send (OMmMents ¢

gathenng ang vg the data
CONETDION S At MALON N iuding

P PD0MAQ DUrBEn f0r Th LOIECTION Of A10MMBTION + ECALIMAIEG 10 dv@rage ' "Oul DE/ "OIDOF W NULQING tRE Lime 107 (Sv.w A MLTLCLONS WM Nog #1310G daT2 WOurie

SQPMHON 10! rOGUUING TNY Durden 1 A SINAGION ~EAdQLITE 507 gy Lrectorate 101 n10:ma10r DPerat.ony and Aeporty "/ 'Y etteryon
Davn righway Swile 1104 Arkngton vA (11014301 and 10 1he e Y Mansgement and Sudqe! PapPrwors Aduct:on Prou1: 370401881 Wasn agton 10 J0%0)

FGing TR DUrden SALMate 51 40, THer 3Rt Of thi

2 REPORT DATE
Ociober 1994

1. AGENCY USE ONLY (Leave Diank)

3 REPORT TYPE AND DATES COVERED
Ptqgus. 1 November 1993-7 March 1994

o S —
€. TITLE AND SUBTITLE

Network Distributed Global Memory for Transparent Message Passing on
Distributed Networks

S FUNDING NUMBERS

C: AHPCRC
C: DAALD3-89-7C-0088

6 AUTHOR(S)

Jeery A Clarke

T PERFORMAING ORGANIZATION NAME(S) AND ADORESS{ES)

Computer Scieaces Corporation
3160 Fairview Pwrk Dr.
Falls Ciuach, VA 22042

8 PERFORMING ORGANIZATION
REPORT NUMBER

9 SPONSORING MONITORING AGENCY NAME(S) AND ADORESS(ES)

U.S. Amay Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdoen Proving Ground, MD 21005-5066

10. SPOKSORING - MONITORING
AGENCY REPORT NUMBER

ARL-CR-173

11. SUPPLEMENTARY NOTES

AMSRL-CI-A, Aberdeen Proving Ground, MD 21005-5067.

Conmtracting Officer’s Representative for this report is Ms. Harold J. Breaux, U.S. Army Research Laboratory, ATTN:

120. ONTRIBUTION AVARABRITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION COODE

13. ABSTRALT (Maximum 200 words)

Keeping track of these messages, however, can be s difficult, error-prone task.

Distributing compute-inteasive applications across multiple platforms can significantly reduce the total execution time
of the application. Programming such a system typically involves sending explicit messages between cooperating processes.

Shared memary models are typically easier to program. Network Distributed Global Memory (NDGM) allows the
programmer (0 view the physically distributed environment as a single, contiguous address space. Instead of sending an
explicit message 10 another node, processes write and read from a global block of memory.

19. SECURITY CLASSIFICATION

(18 SUBIECT TERMmS
INDGM: Network Distributed Global Memory, Distributed Computing Computer programs,
fsoftware (computers). networks
(17 SECUNITY CLASSHICATION |18 SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

15. NUMBER OF PAGES
17

16. PRICE COOE

e ——————————————
20. LIMITATION OF ABSTRACT

UL

win 75400° 180 $500

Standard Form 298 (Rev 2-89)
Prewcnibed by ANS) Std 239-18
298-102

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

LIST OF FIGURES ittt i i e et e e e i
LIST OF TABLES it e e et e e e e e e e e
INTRODUCTION . ..t e e e e e e e e e e et i i e
NETWORK DISTRIBUTED GLOBAL MEMORY (NDGM)
DZONAL: AN APPLICATION e e e e
CONCLUSIONS . . e e s
REFERENCES e e e e
DISTRIBUTION LIST e e e e e s i
B .
o e e
PTiS Oy X
Do T i |

By _ . .
Distis o
s s
A)
Dist i

iii

INTENTIONALLY LEFT BLANK.

iv

Table

LIST OF FIGURES
Message relay system basics e
Message relay systemnode dataarea,
Message relay system node information oL,
MRS nodes sharingdataarea,
NDGM System e e e
Example Dzonal application
D20nal PrOCESSES
Operational SyStem e
LIST OF TABLES
Domain Decomposition With Identical Processors

INTENTIONALLY LEFT BLANK.

vi

1. INTRODUCTION

Network Distributed Global Memory (NDGM) is implemented on top of a message passing layer
called Message Relay System (MRS). MRS presents a common interface for sending and receiving
messages over several different interfaces: Transport Control Protocol/Internet Protocol (TCP/IP;, Shared
Memory Arena, Fifos, and "stdio" file pointers. NDGM sends messages via MRS to copy sections of local

memory to and from the global address space.

In addition to data transfer, NDGM provides mechanisms for program coordination. These include:

Semaphores: Allow one node exclusive access (o0 some service
Memory Locks: Allow one node exclusive access to an area of memory

Barriers: Allow multiple nodes to block until all have reached a certain point

NDGM is implemented using a client-server model.

MRS allows processes on heterogeneous machines to communicate via message passing. Each node
in MRS can choose from several different physical transport mechanisms for its data. In Figure 1, nodes
on the same machine communicate via shared memory, while communication across machines is
accomplished via TCP/IP.

In addition to direct message passing, MRS allows nodes to send their messzges indirectly. For
example, node 1 can communicate with node 3 by relaying its message through nodes 2 and 4. Also a
message may be broadcast to all known nodes. For example, node 1 could send the same message to

nodes 2, 3, and 4 by sending one broadcast message to node 2.

The maximum size of the message is determined when the node is created and is application defined.

It is also possible to directly access a node’s data space in order to minimize buffering.

As shown in Figure 2, an application might define some custom structure to pass as messages that

contain an opcode and some arguments. By assigning a structure pointer to the data area of the node, the

Machine 1 Machine 2
Node 1 Node 3
Shared
Memory
Node 2 Node 4
Figure 1. Message relay system basics.
MRS Node #33 struct my_data *sptr;

‘r----------_‘-?

-
o'--.
-

L & B ¥ N R __§ % N ¥ _J

Figure 2. Message relay system node data area.

message data can be accessed as any arbitrary structure. In addition, the data does not have to be copied
into the MRS message buffer since it is already in the proper position. Such a codelette might look like
this:

typedef struct {
int opcode;
int array_size;
float data[1];
} MY_STRUCT;

MY_STRUCT *sptr;
MRS_NODE *node;

/* Open the node */

/* Assign sptr 10 the node’s data */
sptr = MRS_NODE_DATA(node);

/* Fill it up %/

for(i=0 ; i < 1000 ; i++){
sptr->data[i] = 5.0 * i;
}

mrs_send(node, sizeof(MY_STRUCT) + (1000 * sizeof(float)), (char *)sptr);

An MRS node, shown in Figure 3, provides a convenient abstraction that allows message passing to
be accomplished across several low-level mechanisms. Each node contains a unique ID, the hostname on
which it was created, and the type of processor of that machine. The node contains function pointers to
routines that provide the actual data transport. Currently, transport is provided for: TCP/IP, a shared

memory queue mechanism, a generic memory buffer, and stdio file pointers such as Fifos.

The MRS node also points to a message area. This area can be provided by the user, or the MRS
library will allocate one via calloc(). When a message is received, it contains the owner (originator) of
the message, the last node to handle the message, and an intended delivery path. If the receiving node
can connect to the destination node, the intended list is ignored and the message is delivered directly.

MRS Node Owner
ID . From
Hostname To
Binary Format Mail List

Transport Fanc
TCP/IP

SHMEM
Memory
Fifos

Message Pointer

Figure 3. Message relay system node information

There are also "broadcast” messages. These are messages that, once received, are broadcast to all

known nodes.

Since the node’s data space can be assigned by the application, many nodes can share the same

memory area if the application knows that only one node will access the area at a time.

In Figure 4, for example, if an application needed to maintain 70 TCP/IP connections, each capable
of a one megabyte message, the application could assign the same data buffer to all of the nodes. As long
as data is copied out of the data buffer if needed for later use, it is not necessary to maintain a separate

buffer for each node.

Node 1 Node 2 Node N

Figure 4. MRS nodes sharing data area.

2. NETWORK DISTRIBUTED GLOBAL MEMORY (NDGM)

NDGM is a layer of routines on top of MRS that frees the application from much of the bookkeeping
of message passing. An application communicates with others by writing and reading data into a virtual
space. Even though file memory physically resides on several distributed machines, it is accessed as a
contiguous data buffer. The NDGM library manages the details of accessing this global memory.

The actual layout of the memory is described in a file that is given to the shell script ndgm_start.
Each line in the file gives a hostname and a size in bytes. Lines that start with "#" are ignored:

NDGM Description File

Node cpul.arl.army.mil 5000000
Node cpu2.arl.army.mil 20000000
Node cpu3.arl.army.mil 10000000

The shell script ndgm_start will execute an rsh 10 each of these hosts and start a server program.
Once all of the servers have been started, they are all given the mapping of all of the servers in the
system. In this way, all of the servers know the assigned starting and end address of every other server.
This mapping is also written to the file ndgm_current_net.dat.

To use the virtual buffer created by ndgm_start, an application makes a call to ndgm_iniz(). This reads
the system description from one of the servers and assigns a unique node ID. This ID stays constant for
the duration of the application. The system description defines mapping from the global address space
to local machine offsets.

Each of the servers started by ndgm_start waits for requests from clients to access its data. The server
is continuously executing a blocking read, so little CPU time is being consumed. If the server was started
by root, it automatically tries to lock its data into core memory so that it does not get swapped out by the

operation system. The server will not exit until it receives an NDGM_TERM command from a client.

The system can be terminated by running the ndgm_stop shell script. All servers started up by
ndgm_start are sent an NDGM_TERM command.

As in Figure 5, NDGM sets up an arbitrary size virtual memory array. This memory area is physically
distributed across several machines, but is accessed as one continuous memory block. There are routines
to put data into global memory and to get data from global memory. These routines access the data as
a contiguous block of bytes and not as any particular data type in much the same style as memcopy().
This leaves the actual use of the area application defined.

The actual transport of the data is accomplished through MRS and is transparent to the application.
If the requested area spans several physical machines, the application need not be aware of its layout.
The access routines handle all of the necessary message passing.

The physical memory for each block of data is allocated from shared memory. This allows fast access
by an application, to a block that is on the same physical machine. Once again, the access routines take
care of detecting this situation.

Machine 1 Machine 2 Machine N
Physical Memory Physical Memory Physical Memory

Global Memory Address

0 10, 000, 000 100, 000, 000

Figute 5. NDGM system

In addition to data access routines, NDGM contains synchronization mechanisms: memory locks,
semaphores, and barriers. These mechanisms are implemented in the NDGM server and do not use the

associated operating system mechanisms.

Memory locks allow an application to obtain an advisory lock on any section of the global memory.
These locks do not restrict access to the data but prevent other locks on the same memory area from being
obtained until the original lock is released.

Memory locks are always blocking. This means that a call to lock a section of memory will not retum
until the entire section has been successfully locked or upon system error. The NDGM server maintains
a list of pending requests and grants memory locks when the resource becomes available.

Semaphores are implemented in much the same way as memory locks. Only one client can obtain
a specified semaphore at any time; all others are blocked until the current owner of the semaphore releases

it.

Barriers are used to cdordinate acuvily between several processes One process sets an iniual bamner
value. Each process that subsequently checks wnto the barner will decrement that value When the bamner
vajue reaches zero, all processes that have checked in are notified. The barmer value is then automatcally

reset.

Access 10 global memory and synchronization mechanisms is accomplished through the following

routines:

int
ndgm_init(ndgm_node_id, hosthame, mrs_ho:t_id, verbose)
int ndgm_node_id

char *hostname Connect to Global Memory
int mrs_node_id

int verbose

int

ndgm_put(address, source, length)
NDGM _ADDR address

void *source Puts Data Into Global Memory
NDGM_LENGTH length
int

ndgm_get(address, destination, length)
NDGM_ADDR address

void *destination Gets Data From Global Memory
NDGM_LENGTH length
int

ndgm_lock(address, length)
NDGM_ADDR address
NDGM_LENGTH length Obtains Memory Lock

int
ndgm_unlock(address, length)
NDGM_ADDR address

NDGM_LENGTH length Unlocks a Section of Global Memory
int

ndgm_sema_get(sema_id)

NDGM_KEY sema_id Obtain Semaphore

void

ndgm_sema_release(sema_id)

NDGM_KEY sema_id Release Semaphore

int
ndgm_bammier_init(barmer_id, value)
NDGM_KEY barrier ud

int value Initialize Bammer
int

ndgm_bammer wait(barrier_id)

NDGM_KEY barrier_id Check Into a Barrier

int
ndgm_dump(filename, address, length)

char *filenar:e Dump Memory Image to
NDGM_ADDR address File (Parallel 1/0)

NDGM_LENGTH length

int

ndgm_undump(filename, address, length)

char *filename Read Memory Image From
NDGM_ADDR address File (Parallel 1/0)

NDGM_LENGTH length

3. DZONAL: AN APPLICATION

Dzonal is a distributed version of “The Zonal Code" by Dr. Nishee. TFatel (Patel, Sturek, and Smith
1989). The purpose here is not to document the Dzonal code but to show how NDGM was used to
develop a distributed application and utilities.

Dzonal is a full three-dimensional, Navier-Stokes flow solver for supersonic flow. A copy of the
Dzonal executable is run on multiple machines and coordinated through the use of barriers. Unix shell
scripts are used to decompose the computational domain into fairly even chunks and to start the
application on the remote machine., There is no explicit message passing. Rather, all coordination is
accomplished through NDGM.

As an example, assume there is a geometry with two blocks (Figure 6). The first is 20x20x20 and
the second is 30x20x30. The two blocks overlap along the I dimension at 1=[19,20] of block 1 and
I=[1,2] of block 2.

In addition, assume that there are five identical processors on which to distribute the application. Each

is a workstation with the same amount of main memory and disk space. Their hostnames are CPU1,

CPU2, CPU3, CPU4, and CPUS. With this arrangement. the layout (chosen by the Dzonal domain
decomposition utility) might look like Table 1.

Table 1. Domain Decomposition With Identical Processors

Notice that there is a 1-K plane overlap among processors. This allows each processor to only
compute on interior points; inner-block boundaries are communicated each timestep.

With this layout, the exact amount of global memory is assigned to each processor that will allow its
interior points to be assigned to that processor’s local memory. For example, CPU4 has K planes 10-21
of block 2. Plane 10 and 21, however, are interior to CPU3 and CPUS, so they are assigned to those
CPUs respectively. CPU4 will have K planes 11-20 in its local memory. With a 32-bit floating point
number, and assuming there is a need to store 50 values for each grid node (X, Y, Z, Temp. Press ...),
CPU4 would be assigned [10planes * 30(i) * 20(j) * 5Ovalues * 4 bytes] = 1.2 Megabytes of local
memory. This local memory would then be mapped to some global address (CPU1 would start at 0). The
global addresses assigned to cpu4 will be called Add_B2 K1 through Add B2 K20.

For each timestep, CPU4 will calculate values for its interior points and possibly any global boundary
conditions (i.e., a wall at J = 1, outflow at 1 = 30, etc.) then write those values to global memory. Since
all of these values are in local memory, this is a fast-writing operation. Once CPU4 has output its values,
it waits in a barrier. When all CPUs have checked into the barrier (they have all computed and output
their data) they can then read back the information for their boundaries. This includes the cross block
communication for the overlap of block 1 and block 2. While this communication scheme might get quite

10

Block #2 [30x20x30]

Block #1 [20x20x20]

Figure 6. Example Dzonal application.

complicated, if explicit message passing is used, it is quite straightforward when viewed as a single shared

memory.

Nodes that contain absolute boundaries then apply the appropriate boundary conditions and write that
data to global memory. When all nodes check into the final barrier, the application continues to the next
timestep. The local to global mapping of this application would look like Figure 7.

Since the NDGM servers are separate processes accessed by the Dzonal clients, other clients can access
the global memory while the solution is developing. This allows quite useful debugging utilities to be
developed. Two such utilities that have been developed are dz_look and dz_draw_plane. Dz_look allows
the user to look at any value in global memory by entering its IJK value. Dz_draw_plane will pull any
subsection of any plane (I, J, or K) out of global memory and send it to a network visualization program
called Bop_View (Clarke 1994). A fully operational system might look like Figure 8.

11

Network Distributed Global Memory Servers

CPUI CPy2 CPU3 CPU4 CPUS
* dd_Bl1 K1
~B- dd X2 K11
Add Xl K /;k< /Q\ A
CPU1 CPU2 CPU3 cpu4 CPUS

Figure 7. Dzonal processes.

Global Memory Space

\

Dzonal 1 - N Dy ook Dz_draw_plane
Z_loo ‘
N 1 Bop_View
IJK>2 4 10
X=12

Y =335
Z = 45.66
Pressure = 2116.55

1JK>

Figure 8. .Operational system.

12

4. CONCLUSIONS

NDGM allows applications to view a physically distributed group of processors as a shared memory
parallel machine. Although many factors determine communication speed such as CPU and network load,
the following numbers are good "ballpark” numbers for access times:

Transfer to local NDGM server: 6 MBytes/second
Transfer to remote NDGM server: 4 KBytes/second

These numbers are averages on a network of Silicon Graphics Indigo workstations run during peak
and nonpeak hours. They include different transfer lengths and all setup overhead. Your mileage may

vary.

Assuming these transfer rates are sufficient, NDGM can ve used to develop and run parallel
applications on networks of relatively low-cost platforms. When the time spent in a batch queue is taken
into account, the total wall clock time may be comparable to larger more expensive platforms. The design
goal with NDGM is to minimize (dollars/grid node) while maintaining an acceptable (wall clock time/grid
node).

13

INTENTIONALLY LEFT BLANK.

14

5. REFERENCES

Clarke, Jerry. "Remote Data Transfer (RDT): An Interprocess Data Transfer Method for Distributed
Environments." BRL-TR-3339, U.S. Army Ballistic Rescarch Laboratory, Abcrdeen Proving Ground,
MD, May 1992.

Clarke, Jerry A. "Distributed Heterogencous Visualization, Bop and Bop _View." ARL-CR-172, US.
Ammy Research Laboratory, Aberdeen Proving Ground, MD, September 1994,

Dykstra, Phillip C. "The BRL CAD Package, An Ovcerview.” U.S. Ballistic Rescarch Laboratory,
Aberdeen Proving Ground, MD, October 1988.

Muuss, Michael. "Workstations, Networking, Distributed Graphics, and Parallel Processing.” U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, October 1988.

Patel, N., W. Sturek, and G. Smith. "Parallel Computation of Supcrsonic Flow Using a
Three-Dimensional Navier-Stokes Code." BRL-TR-30XX, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, MD, November 1988.

"XDR: External Data Representation Standard." RFC-1014, DDN Network Information Center, Menlo
Park, CA, June 1987.

15

INTENTIONALLY LEFT BLANK.

16

Administrator

Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station

Alexandria, VA 22304-6145

Commander

U.S. Army Materiel Command
ATTN: AMCAM

5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-SD-TA,
Records Management

2800 Powder Mill Rd.

Adelphi, MD 20783-1145

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-SD-TL,
Technical Library

2800 Powder Mill Rd.

Adelphi, MD 20783-1145

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-SD-TP,
Technical Publishing Branch

2800 Powder Mill Rd.

Adelphi, MD 20783-1145

Commander

U.S. Army Armament Research,
Development, and Engineering Center

ATIN: SMCAR-TDC

Picatinny Arsenal, NJ (07806-5000

Director

Benet Weapons Laboratory

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-CCB-TL

Watervliet, NY 12189-4050

Director

U.S. Army Advanced Systems Research
and Analysis Office (ATCOM)

ATTN: AMSAT-R-NR, M/S 219-1

Ames Research Center

Moffett Field, CA 94035-1000

17

Commander

U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

Commander

U.S. Army Tank-Automotive Command
ATTN: AMSTA-JSK (Armor Eng. Br.)
Warren, MI 48397-5000

Director

U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR

White Sands Missile Range, NM 88002-5502

Commandant

U.S. Army Infantry School
ATTN: ATSH-WCB-O

Fort Benning, GA 31905-5000

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: AMSTE-TC

Dir, USAERDEC
ATTN: SCBRD-RT

Cdr, USACBDCOM
ATTN: AMSCB-CII

Dir, USARL
ATTN: AMSRL-SL-I

Dir, USARL
ATTN: AMSRL-OP-AP-L

No. of

1

11

Computer Sciences Corporation
ATTN: Dr. David Brown
3160 Fairview Park Dr.

Mail Code 265

Falls Church, VA 22042

rdeen Proving Grou

Dir, USARL
ATTN: AMSRL-CI, William Mermagen
AMSRL-CI-A, Harold Breaux
AMSRL-CI-AC,
John Grosh
Phillip Dykstra
Jerry Clarke
Deborah Thompson
Jennifer Hare
Eric Mark
Richard Angelini
Kathy Burke
AMSRL-CI-C, Walter Sturek

18

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ___ ARL-CR-173 Date of Report __October 1994

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for
which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of
ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,
operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

